If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2+10x-125=0
a = 72; b = 10; c = -125;
Δ = b2-4ac
Δ = 102-4·72·(-125)
Δ = 36100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36100}=190$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-190}{2*72}=\frac{-200}{144} =-1+7/18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+190}{2*72}=\frac{180}{144} =1+1/4 $
| x*1.5x=300 | | -6=2z/3 | | p-1/4⋅3=-5/6 | | 3/4x-2=180 | | N-3=6n+9 | | 4(x+11.25)=45 | | 5(5+5n)=-100 | | -11s+2=-9 | | |c-5)=7 | | 4x-3=22.5 | | |c-5=|7 | | 2m-4+2m=16 | | 25=-2y+12 | | q+(-6.4)=9.6 | | 9z-4=27 | | -2=2b/3-4 | | P=12+5d/12 | | 2(5n+3)=8n+2(+3) | | 16*2^m=4^8-8 | | 2(5n+3)=8n+2(0+3) | | -1=v-6/22 | | -9h=-8h-10 | | 4a=23 | | 6x-40=2x+15 | | 0.4f-8.94=16.52+3.1f | | -1+18g=-20+17g | | 1/2x+1/8x=7 | | -2(5y-1)-y=-4(1-3) | | 1/2k=-274 | | -10=1/5x | | 19-12q=-14q-11 | | 5v+4=4v+6-6-2 |